Критерии оценивания заданий с развёрнутым ответом

- **15**
- a) Решите уравнение $\sin 2x + 2\sin^2 x = 0$.
- б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-2\pi; -\frac{\pi}{2}\right]$.

Решение

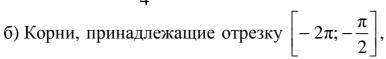
а) Преобразуем уравнение:

$$2\sin x(\cos x + \sin x) = 0.$$

Получаем, что $\sin x = 0$ или $\sin x = -\cos x$.

Из второго уравнения получаем tg x + 1 = 0, поскольку $\cos x \neq 0$. Следовательно,

$$x = \pi n$$
 или $x = -\frac{\pi}{4} + \pi n$, где $n \in \mathbb{Z}$.



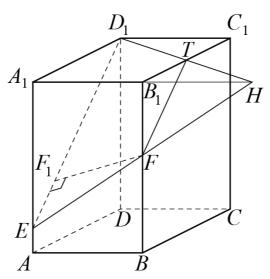
найдём, пользуясь единичной окружностью.

Получаем
$$x = -2\pi$$
, $x = -\frac{5\pi}{4}$, $x = -\pi$.

Ответ: а)
$$\pi n$$
, $-\frac{\pi}{4} + \pi n$, где $n \in \mathbb{Z}$; б) -2π , $-\frac{5\pi}{4}$, $-\pi$.

Содержание критерия	Баллы
Обоснованно получены верные ответы в обоих пунктах.	2
Обоснованно получен верный ответ в пункте a или в пункте δ .	1
ИЛИ	
Получены неверные ответы из-за вычислительной ошибки, но при	
этом имеется верная последовательность всех шагов решения обоих	
пунктов — пункта a и пункта δ .	
Решение не соответствует ни одному из критериев, перечисленных	0
выше.	
Максимальный балл	2

- На ребре AA_1 прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$ взята точка E так, что $A_1E=6EA$. Точка T середина ребра B_1C_1 . Известно, что $AB=4\sqrt{2}$, AD=12 , $AA_1=14$.
 - а) Докажите, что плоскость ETD_1 делит ребро BB_1 в отношении 4:3.
 - б) Найдите площадь сечения параллелепипеда плоскостью ETD_1 .



а) Проведём отрезок ED_1 и в плоскости грани BB_1C_1C проведём через точку T прямую, параллельную ED_1 . Эта прямая пересечёт ребро BB_1 в точке F . Точка F лежит в плоскости ETD_1 . Треугольники EA_1D_1 и FB_1T подобны. Следовательно,

$$\frac{B_1 F}{B_1 T} = \frac{A_1 E}{A_1 D_1} = \frac{6A_1 A}{7AD} = \frac{6 \cdot 14}{7 \cdot 12} = 1.$$

Таким образом, $B_1F = B_1T = \frac{1}{2}B_1C_1 = 6.$

Тогда FB = 14 - 6 = 8 и $BF : FB_1 = 4:3$.

б) Четырёхугольник ED_1TF — сечение параллелепипеда плоскостью ETD_1 . Поскольку стороны FT и ED_1 параллельны, но не равны, ED_1TF — трапеция. Продолжим боковые стороны EF и D_1T до пересечения в точке H .

Точка T — середина B_1C_1 , поэтому отрезок FT — средняя линия треугольника ED_1H . Из равенства треугольников A_1D_1H и A_1EH получаем $D_1H=EH$, откуда $D_1T=EF$, то есть трапеция ED_1TF — равнобедренная.

Найдём стороны трапеции:

$$ED_1 = EA_1 \cdot \sqrt{2} = 12\sqrt{2} \;,\; FT = FB_1 \cdot \sqrt{2} = 6\sqrt{2} \;,\; EF = D_1T = \sqrt{D_1C_1^2 + TC_1^2} = 2\sqrt{17} \;.$$
 Высота FF_1 трапеции равна $\sqrt{\left(2\sqrt{17}\right)^2 - \left(3\sqrt{2}\right)^2} = 5\sqrt{2} \;.$

Площадь равна
$$5\sqrt{2} \cdot \frac{12\sqrt{2} + 6\sqrt{2}}{2} = 90$$
.

Ответ: б) 90.

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта a , и	2
обоснованно получен верный ответ в пункте δ .	
Имеется верное доказательство утверждения пункта а, или	1
обоснованно получен верный ответ в пункте δ .	
Решение не соответствует ни одному из критериев, перечисленных	0
выше.	
Максимальный балл	2

17

Решите неравенство $\frac{81^{x} + 2 \cdot 25^{x \log_{5} 3} - 5}{(4x - 1)^{2}} \ge 0.$

Решение

Точка $x = \frac{1}{4}$ не является решением неравенства. При $x \neq \frac{1}{4}$ получаем

$$81^x + 2 \cdot 9^x - 5 \ge 0$$
.

Замена $y=9^x$ даёт $y^2+2y-5\geq 0$, откуда $y\leq -1-\sqrt{6}$ или $y\geq \sqrt{6}-1$. Неравенство $9^x\leq -1-\sqrt{6}$ не имеет решений, а из неравенства $9^x\geq \sqrt{6}-1$ получаем $x\geq \log_9\left(\sqrt{6}-1\right)$.

Сравним $\log_9(\sqrt{6}-1)$ и $\frac{1}{4}$:

$$\sqrt{6} - 1 < 2, 5 - 1 = 1, 5 < \sqrt{3} = 9^{\frac{1}{4}}$$
.

Следовательно, $\log_9(\sqrt{6}-1) < \frac{1}{4}$, и поэтому решением неравенства являются

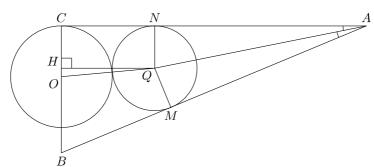
два промежутка: $\log_9(\sqrt{6}-1) \le x < \frac{1}{4}$ и $x > \frac{1}{4}$.

Ответ:
$$\left[\log_9\left(\sqrt{6}-1\right);\frac{1}{4}\right),\left(\frac{1}{4};+\infty\right).\right.$$

Содержание критерия	Баллы
Обоснованно получен верный ответ.	2
Обоснованно получен ответ, отличающийся от верного исключе-	1
нием граничных точек.	
ИЛИ	
Получен неверный ответ из-за вычислительной ошибки, но при	
этом имеется верная последовательность всех шагов решения.	
Решение не соответствует ни одному из критериев, перечисленных	0
выше.	
Максимальный балл	2

- В прямоугольном треугольнике ABC с прямым углом C известны стороны AC=15, BC=8. Окружность радиуса 2,5 с центром O на стороне BC проходит через вершину C. Вторая окружность касается катета AC, гипотенузы треугольника, а также внешним образом касается первой окружности.
- а) Докажите, что радиус второй окружности меньше, чем $\frac{1}{4}$ длины катета AC .
- б) Найдите радиус второй окружности.

18



а) Пусть Q — центр второй окружности, M и N — её точки касания со сторонами AB и AC соответственно, а точка H — проекция точки Q на BC . Имеем

$$AB = \sqrt{AC^2 + BC^2} = 17$$
,

следовательно,

$$\cos A = \frac{15}{17}$$
, $\sin A = \frac{8}{17}$.

Тогда

$$\operatorname{tg} \angle NAQ = \operatorname{tg} \frac{A}{2} = \frac{\sin A}{1 + \cos A} = \frac{1}{4}.$$

Поэтому AC > AN = 4NQ, что требовалось доказать.

б) Пусть x — радиус второй окружности. Рассмотрим прямоугольный треугольник OHQ;

$$QH = CN = 15 - 4x > 0$$
, $OQ = x + 2.5$; $OH = |OC - CH| = |2.5 - x|$.

По теореме Пифагора $OH^2 + QH^2 = OQ^2$, откуда

$$(15-4x)^2+(2,5-x)^2=(2,5+x)^2$$
; $16x^2-130x+225=0$.

Решая это уравнение, находим x = 2,5 или x = 5,625. Условию 15 - 4x > 0 удовлетворяет только x = 2,5. Кстати, отсюда следует, что точки O и H совпадают.

Ответ: 2,5.

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта a , и обоснован-	3
но получен верный ответ в пункте δ .	
Обоснованно получен верный ответ в пункте δ .	2
ИЛИ	
Имеется верное доказательство утверждения пункта а и при	
обоснованном решении пункта δ получен неверный ответ из-за	
вычислительной ошибки.	
Имеется верное доказательство утверждения пункта а.	1
ИЛИ	
При обоснованном решении пункта δ получен неверный ответ из-за	
вычислительной ошибки.	
ИЛИ	
Обоснованно получен верный ответ в пункте δ с использованием	
утверждения пункта a , при этом пункт a не выполнен.	
Решение не соответствует ни одному из критериев, перечисленных	0
выше.	
Максимальный балл	3

Алексей приобрёл ценную бумагу за 7 тыс. рублей. Цена бумаги каждый год возрастает на 2 тыс. рублей. В любой момент Алексей может продать бумагу и положить вырученные деньги на банковский счёт. Каждый год сумма на счёте будет увеличиваться на 10 %. В течение какого года после покупки Алексей должен продать ценную бумагу, чтобы через тридцать лет после покупки этой бумаги сумма на банковском счёте была наибольшей?

Решение

19

Если Алексей продаст бумагу в течение k-го года, то через тридцать лет после покупки сумма на его счёте будет равна

$$(2k+5)\cdot(1,1)^{30-k}$$
.

Таким образом, нам нужно найти номер максимального члена последовательности $a_k = (2k+5) \cdot (1,1)^{30-k}$, где k пробегает целые значения от 1 до 30. Рассмотрим приращение

$$b_k = a_k - a_{k-1} = (1,1)^{30-k} (2k+5-1,1\cdot(2(k-1)+5)) = (1,1)^{30-k} (1,7-0,2k).$$

Отсюда $b_k>0$ при $k\leq 8$ и $b_k<0$ при k>8. Следовательно, наибольшее значение последовательность a_k принимает при k=8.

Ответ: в течение восьмого года.

Содержание критерия	Баллы
Обоснованно получен правильный ответ.	3
Верно построена математическая модель, решение сведено к ис-	2
следованию этой модели, получен неверный ответ из-за	
вычислительной ошибки.	
ИЛИ	
Получен верный ответ, но решение недостаточно обосновано.	
Верно построена математическая модель и решение сведено к ис-	1
следованию этой модели, при этом решение не завершено.	
Решение не соответствует ни одному из критериев, перечисленных	0
выше.	
Максимальный балл	3

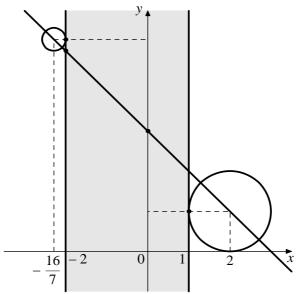
Найдите все значения параметра a, при каждом из которых система

$$\begin{cases} (x-1)(x+2) \le 0, \\ 8x^2 + 8y^2 - 16a(x-y) + 15a^2 - 48y - 50a + 72 = 0 \end{cases}$$

имеет единственное решение.

Решение

20



Выделим в уравнении системы полные квадраты:

$$8x^{2} - 16ax + 8a^{2} + 8y^{2} + 16ay + 8a^{2} - a^{2} - 48y - 50a + 72 = 0;$$

$$8(x - a)^{2} + 8(y + a)^{2} - 48(y + a) + 72 - a^{2} - 2a = 0.$$

Ещё раз выделим полный квадрат:

$$8(x-a)^2 + 8(y-3+a)^2 - a^2 - 2a = 0; (x-a)^2 + (y-3+a)^2 = \frac{a(a+2)}{8}.$$

Уравнение определяет окружность с центром (a; 3-a) и радиусом $\sqrt{\frac{a^2+2a}{8}}$.

Неравенство $(x-1)(x+2) \le 0$ определяет вертикальную полосу $-2 \le x \le 1$. На рисунке видно, что единственное решение получается в двух случаях.

1. Окружность касается полосы внешним образом. Это происходит тогда и только тогда, когда центр расположен вне полосы, а её радиус равен расстоянию от центра до ближайшей границы полосы:

$$\begin{cases} a < -2, \\ (a+2)^2 = \frac{a^2 + 2a}{8} \end{cases}$$
 или
$$\begin{cases} a > 1, \\ (a-1)^2 = \frac{a^2 + 2a}{8}, \end{cases}$$

откуда

$$\begin{cases} a < -2, \\ a + 2 = \frac{a}{8} \end{cases} \text{ или } \begin{cases} a > 1, \\ 7a^2 - 18a + 8 = 0. \end{cases}$$

Первая система имеет решение $a = -\frac{16}{7}$. Вторая система имеет решение a=2.

2. Окружность превращается в точку и при этом принадлежит полосе:

2. Окружность превращается в точку и при этом принадлеж
$$\begin{cases} -2 \le a \le 1, \\ a^2 + 2a = 0, \end{cases}$$
 откуда $a = 0$ или $a = -2$.
Ответ: $-\frac{16}{7}$; -2 ; 0; 2.

Ответ:
$$-\frac{16}{7}$$
; -2 ; 0; 2.

Содержание критерия	Баллы
Обоснованно получен верный ответ.	4
С помощью верного рассуждения получены все верные значения параметра, но в ответ включены также и одно-два неверных значения.	3
С помощью верного рассуждения получено хотя бы одно верное значение параметра.	2
Задача верно сведена к исследованию совокупности трёх квадратных уравнений относительно a .	1
Решение не соответствует ни одному из критериев, перечисленных выше.	0
Максимальный балл	4

- 21
- В роте два взвода, в первом взводе солдат меньше, чем во втором, но больше чем 50, а вместе солдат меньше чем 120. Командир знает, что роту можно построить по несколько человек в ряд так, что в каждом ряду будет одинаковое число солдат, большее 7, и при этом ни в каком ряду не будет солдат из двух разных взводов.
- а) Сколько солдат в первом взводе и сколько во втором? Приведите хотя бы один пример.
- б) Можно ли построить роту указанным способом по 11 солдат в одном ряду?
- в) Сколько в роте может быть солдат?

Пусть в первом взводе k солдат, во втором l солдат. Тогда числа k и l имеют общий делитель, больший 7, и при этом

$$\begin{cases} 50 < k < l, \\ k + l \le 119 \end{cases}$$

- а) Например, 54 и 63 солдата. Вместе 117, их можно построить в колонну по 9 человек в ряду так, что 6 рядов будет заполнено солдатами только из первого взвода, а 7 рядов только из второго.
- б) Предположим, что общий делитель 11. Тогда, учитывая, что 50 < k < 60, получаем, что k = 55. Наименьшее возможное значение l равно 55 + 11 = 66, но вместе получается 121 человек, что противоречит условию.
- в) Число l-k больше нуля и делится на общий делитель чисел k и l, поэтому $l-k\geq 8$; $k-l\leq -8$, что вместе с условием $k+l\leq 119$ приводит к неравенство $2k\leq 111$, то есть $k\leq 55$. При этом

$$k + d \le l \le 119 - k$$
,

где d — наименьший общий делитель, превосходящий 7.

Если k = 51 = 3.17, то d = 17, l = 68, а в роте 119 солдат.

Если $k = 52 = 4 \cdot 13$, то $65 \le l \le 67$. Тогда l = 65, общий делитель 13 и k + l = 117.

Если k = 53, то $53 + 53 = 106 \le l \le 66$. Противоречие.

Если $k=54=6\cdot 9$, то $54+9=63\le l\le 65$. Тогда l=63, общий делитель равен 9, и в роте 117 солдат.

Если $k = 55 = 5 \cdot 11$, то $66 \le l \le 64$, но числа 63 и 64 взаимно просты с 55. Противоречие.

Ответ: а) Например, 54 и 63; б) нет; в) 117 или 119.

Содержание критерия	Баллы
Обоснованно получен верный ответ во всех пунктах.	4
Верно выполнены пункты a и b или b и b .	3
Верно выполнены пункты a и δ или только пункт ϵ .	2
Верно выполнен один из пунктов a и δ .	1
Решение не соответствует ни одному из критериев, перечисленных	0
выше.	
Максимальный балл	4

Критерии оценивания заданий с развёрнутым ответом

- **15** a) Решите уравнение $2\sin^2 x \sqrt{3}\sin 2x = 0$.
 - б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[\frac{3\pi}{2}; 3\pi\right]$.

Решение

а) Преобразуем уравнение:

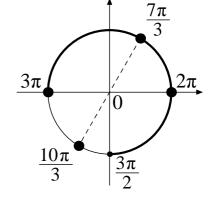
$$2\sin x \Big(\sin x - \sqrt{3}\cos x\Big) = 0.$$

Получаем, что $\sin x = 0$ или $\sin x = \sqrt{3} \cos x$.

Из второго уравнения находим $\operatorname{tg} x = \sqrt{3}$, поскольку $\cos x \neq 0$.

Следовательно,

$$x = \pi n$$
 или $x = \frac{\pi}{3} + \pi n$, где $n \in \mathbb{Z}$.



Все найденные значения удовлетворяют условию $\cos x \neq 0$.

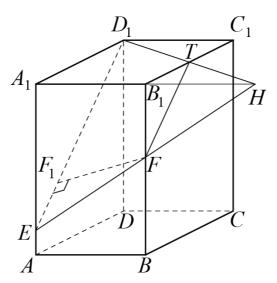
б) Корни, принадлежащие отрезку $\left[\frac{3\pi}{2}; 3\pi\right]$, найдём, пользуясь единичной окружностью. Получаем $x = 2\pi$, $x = \frac{7\pi}{3}$, $x = 3\pi$.

Ответ: a)
$$\pi n$$
, $\frac{\pi}{3} + \pi n$, где $n \in \mathbb{Z}$; б) 2π , $\frac{7\pi}{3}$, 3π .

Содержание критерия	Баллы
Обоснованно получены верные ответы в обоих пунктах.	2
Обоснованно получен верный ответ в пункте a или в пункте δ .	1
ИЛИ	
Получены неверные ответы из-за вычислительной ошибки, но при	
этом имеется верная последовательность всех шагов решения обоих	
пунктов – пункта a и пункта δ .	
Решение не соответствует ни одному из критериев, перечисленных	0
выше.	
Максимальный балл	2

- На ребре AA_1 прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$ взята точка E так, что $A_1E=4EA$. Точка T середина ребра B_1C_1 . Известно, что $AB=3\sqrt{2}$, AD=16, $AA_1=20$.
 - а) Докажите, что плоскость ETD_1 делит ребро BB_1 в отношении 3:2.
 - б) Найдите площадь сечения параллелепипеда плоскостью ETD_1 .

16



а) Проведём отрезок ED_1 и в плоскости грани BB_1C_1C проведём через точку T прямую, параллельную ED_1 . Эта прямая пересекает ребро BB_1 в точке F. Точка F лежит в плоскости ETD_1 и делит BB_1 на две части. Треугольники EA_1D_1 и FB_1T подобны. Следовательно,

$$\frac{B_1F}{B_1T} = \frac{A_1E}{A_1D_1} = \frac{4A_1A}{5AD} = \frac{4 \cdot 20}{5 \cdot 16} = 1.$$

Таким образом, $B_1F = B_1T = \frac{B_1C_1}{2} = 8$.

Тогда FB = 20 - 8 = 12 и $BF : FB_1 = 3:2$.

б) Четырёхугольник ED_1TF — сечение параллелепипеда плоскостью ETD_1 . Поскольку стороны FT и ED_1 параллельны, но не равны, ED_1TF — трапеция. Продолжим боковые стороны EF и D_1T до пересечения в точке H. Точка T — середина B_1C_1 , поэтому отрезок FT — средняя линия треугольника ED_1H . Из равенства треугольников A_1D_1H и A_1EH получаем $D_1H=EH$, откуда $D_1T=EF$, то есть трапеция ED_1TF — равнобедренная.

Найдём стороны трапеции:

$$ED_1 = EA_1 \cdot \sqrt{2} = 16\sqrt{2}$$
, $FT = FB_1 \cdot \sqrt{2} = 8\sqrt{2}$,
 $EF = D_1T = \sqrt{D_1C_1^2 + TC_1^2} = \sqrt{(3\sqrt{2})^2 + 8^2} = \sqrt{82}$.

Проведём в трапеции высоту FF_1 . Имеем

$$EF_1 = \frac{ED_1 - FT}{2} = 4\sqrt{2}$$
, $FF_1 = \sqrt{EF^2 - EF_1^2} = \sqrt{82 - (4\sqrt{2})^2} = 5\sqrt{2}$.

Площадь трапеции равна $5\sqrt{2} \cdot \frac{16\sqrt{2} + 8\sqrt{2}}{2} = 120$.

Ответ: б) 120.

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта а, и обосно-	2
ванно получен верный ответ в пункте δ .	
Имеется верное доказательство утверждения пункта а, или обосно-	1
ванно получен верный ответ в пункте δ .	
Решение не соответствует ни одному из критериев, перечисленных	0
выше.	
Максимальный балл	2

17

Решите неравенство
$$\frac{8 \cdot 7^{x} - 4^{x \log_2 7} - 11}{(2x - 1)^2} \ge 0.$$

Решение

Точка $x = \frac{1}{2}$ не является решением неравенства. При $x \neq \frac{1}{2}$ получаем

$$8 \cdot 7^x - 49^x - 11 \ge 0$$
.

Замена $y = 7^x$ даёт $y^2 - 8y + 11 \le 0$, откуда $4 - \sqrt{5} \le y \le 4 + \sqrt{5}$.

Получаем $4-\sqrt{5} \le 7^x \le 4+\sqrt{5}$, откуда $\log_7\left(4-\sqrt{5}\right) \le x \le \log_7\left(4+\sqrt{5}\right)$.

Нужно сравнить границы полученного отрезка с $\frac{1}{2}$. Имеем

$$4 - \sqrt{5} < 2 < \sqrt{7}$$
, $4 + \sqrt{5} > 6 > \sqrt{7}$.

Следовательно, $\log_7\left(4-\sqrt{5}\right) < \frac{1}{2} < \log_7\left(4+\sqrt{5}\right)$, и поэтому решением неравенства являются два промежутка

$$\log_7(4-\sqrt{5}) \le x < \frac{1}{2}$$
 и $\frac{1}{2} < x \le \log_7(4+\sqrt{5})$.

Otbet:
$$\left[\log_7(4-\sqrt{5}); \frac{1}{2}, \left(\frac{1}{2}; \log_7(4+\sqrt{5})\right)\right]$$
.

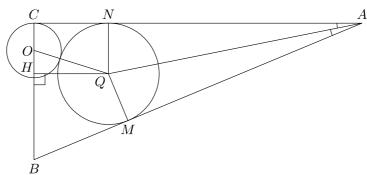
Содержание критерия	Баллы
Обоснованно получен верный ответ.	2
Обоснованно получен ответ, отличающийся от верного исключе-	1
нием граничных точек.	
ИЛИ	
Получен неверный ответ из-за вычислительной ошибки, но при	
этом имеется верная последовательность всех шагов решения.	
Решение не соответствует ни одному из критериев, перечисленных	0
выше.	
Максимальный балл	2

В прямоугольном треугольнике ABC с прямым углом C известны стороны AC=12, BC=5. Окружность радиуса 0,5 с центром O на стороне BC проходит через вершину C. Вторая окружность касается катета AC, гипотенузы треугольника, а также внешним образом касается первой окружности.

- а) Докажите, что радиус второй окружности меньше, чем $\frac{1}{5}$ длины катета AC .
- б) Найдите радиус второй окружности.

Решение

18



а) Пусть Q — центр второй окружности, M и N — её точки касания со сторонами AB и AC соответственно, а точка H — проекция точки Q на BC .

$$AB = \sqrt{AC^2 + BC^2} = 13$$
,

следовательно,

$$\cos A = \frac{12}{13}, \quad \sin A = \frac{5}{13}.$$

Тогда

$$\operatorname{tg} \angle NAQ = \operatorname{tg} \frac{A}{2} = \frac{\sin A}{1 + \cos A} = \frac{1}{5}.$$

Поэтому AC > AN = 5NQ, что требовалось доказать.

б) Пусть x — радиус второй окружности. Рассмотрим прямоугольный треугольник OHQ:

$$QH = CN = 12 - 5x > 0$$
, $OQ = x + 0.5$,
 $OH = |OC - CH| = |0.5 - x|$.

По теореме Пифагора $OH^2 + QH^2 = OQ^2$, откуда

$$(12-5x)^2 + (0.5-x)^2 = (0.5+x)^2$$
; $25x^2 - 122x + 144 = 0$.

Решая это уравнение, находим x = 2 или x = 2,88. Условию 12 - 5x > 0 удовлетворяет только x = 2.

Ответ: 2.

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта а, и обосно-	3
ванно получен верный ответ в пункте δ .	
Обоснованно получен верный ответ в пункте δ .	2
ИЛИ	
Имеется верное доказательство утверждения пункта a , и при	
обоснованном решении пункта δ получен неверный ответ из-за	
вычислительной ошибки.	
Имеется верное доказательство утверждения пункта а.	1
ИЛИ	
При обоснованном решении пункта δ получен неверный ответ из-за	
вычислительной ошибки.	
ИЛИ	
Обоснованно получен верный ответ в пункте δ с использованием	
утверждения пункта a , при этом пункт a не выполнен.	
Решение не соответствует ни одному из критериев, перечисленных	0
выше.	
Максимальный балл	3

19

Алексей приобрёл ценную бумагу за 8 тыс.рублей. Цена бумаги каждый год возрастает на 1 тыс. рублей. В любой момент Алексей может продать бумагу и положить вырученные деньги на банковский счёт. Каждый год сумма на счёте будет увеличиваться на 8 %. В течение какого года после покупки Алексей должен продать ценную бумагу, чтобы через двадцать пять лет после покупки этой бумаги сумма на банковском счёте была наибольшей?

Решение

Если Алексей продаст бумагу в течение k -го года, то через двадцать пять лет после покупки сумма на его счёте будет равна

$$(k+7)\cdot 1,08^{25-k}$$
.

Таким образом, нам нужно найти номер максимального члена последовательности $a_k = (k+7) \cdot 1,08^{25-k}$, где k пробегает целые значения от 1 до 25. Рассмотрим приращение

$$b_k = a_k - a_{k-1} = 1,08^{25-k} \cdot (k+7-1,08\cdot((k-1)+7)) = 1,08^{25-k}(0,52-0,08k).$$

Отсюда $b_k > 0$ при $k \le 6$ и $b_k < 0$ при k > 6. Следовательно, наибольшее значение последовательность a_k принимает при k = 6.

Ответ: в течение шестого года.

Содержание критерия	Баллы
Обоснованно получен правильный ответ	3
Верно построена математическая модель, решение сведено	2
к исследованию этой модели, получен неверный ответ из-за	
вычислительной ошибки.	
ИЛИ	
Получен верный ответ, но решение недостаточно обосновано.	
Верно построена математическая модель, и решение сведено к ис-	1
следованию этой модели, при этом решение не завершено.	
Решение не соответствует ни одному из критериев, перечисленных	0
выше.	
Максимальный балл	3

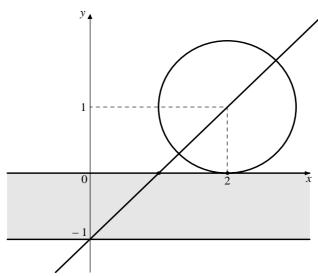
Найдите все значения параметра a, при каждом из которых система

$$\begin{cases} y(y+1) \le 0, \\ 3x^2 + 3y^2 - 6a(x+y) + 5a^2 - 6x + 4a + 3 = 0 \end{cases}$$

имеет единственное решение.

Решение

20



Выделим в уравнении системы полные квадраты:

$$3x^{2} - 6ax + 3a^{2} + 3y^{2} - 6ay + 3a^{2} - 6x + 4a + 3 - a^{2} = 0;$$

$$3(x-a)^{2} + 3(y-a)^{2} - 6(x-a) + 3 - 2a - a^{2} = 0.$$

Ещё раз выделим полный квадрат:

$$3(x-a)^{2}-6(x-a)+3+3(y-a)^{2}=a^{2}+2a;$$
$$(x-a-1)^{2}+(y-a)^{2}=\frac{a^{2}+2a}{3}.$$

Уравнение определяет окружность с центром (a+1;a) и радиусом $\sqrt{\frac{a^2+2a}{3}}$.

Неравенство $y(y+1) \le 0$ определяет горизонтальную полосу $-1 \le y \le 0$. На рисунке видно, что единственное решение получается в двух случаях.

1. Окружность касается полосы внешним образом. Это происходит тогда и только тогда, когда центр расположен вне полосы, а её радиус равен расстоянию от центра до ближайшей границы полосы:

$$\begin{cases} a < -1, \\ (a+1)^2 = \frac{a^2 + 2a}{3} \end{cases} \quad \text{или} \begin{cases} a > 0, \\ a^2 = \frac{a^2 + 2a}{3}, \end{cases}$$

откуда

$$\begin{cases} a < -1, \\ 2a^2 + 4a + 3 = 0 \end{cases}$$
 или
$$\begin{cases} a > 0, \\ 2a^2 - 2a = 0. \end{cases}$$

© СтатГрад 2014–2015 уч. г. Публикация в Интернете или печатных изданиях без письменного согласия СтатГрад запрещена

Первая система не имеет решений. Вторая система имеет решение a = 1.

2. Окружность превращается в точку и при этом принадлежит полосе:

$$\begin{cases} -1 \le a \le 0, \\ a^2 + 2a = 0, \end{cases}$$
 откуда $a = 0$.

Ответ: 0; 1.

Содержание критерия	Баллы
Обоснованно получен верный ответ.	4
С помощью верного рассуждения получены все верные значения параметра, но в ответ включены также и одно-два неверных значения.	3
С помощью верного рассуждения получено хотя бы одно верное значение параметра.	2
Задача верно сведена к исследованию совокупности трёх квадратных уравнений относительно a .	1
Решение не соответствует ни одному из критериев, перечисленных выше.	0
Максимальный балл	4

- 21
- В роте два взвода, в первом взводе солдат меньше, чем во втором, но больше чем 46, а вместе солдат меньше чем 111. Командир знает, что роту можно построить по несколько человек в ряд так, что в каждом ряду будет одинаковое число солдат, большее 8, и при этом ни в каком ряду не будет солдат из двух разных взводов.
- а) Сколько солдат в первом взводе и сколько во втором? Приведите хотя бы один пример.
- б) Можно ли построить роту указанным способом по 13 солдат в одном ряду?
- в) Сколько в роте может быть солдат?

Пусть в первом взводе k солдат, во втором l солдат. Тогда числа k и l имеют общий делитель, больший 7, и при этом

$$\begin{cases} 47 \le k < l, \\ k + l \le 110. \end{cases}$$

- а) Например, 50 и 60 солдат. Вместе 110, их можно построить в колонну по 10 человек в ряду так, что 5 рядов будет заполнено солдатами только из первого взвода, а 6 рядов только из второго.
- б) Предположим, что общий делитель 13. Тогда, учитывая, что $47 \le k < 55$, получаем, что k = 52. Наименьшее возможное значение l равно 52 + 13 = 65, но вместе получается 117 человек, что противоречит условию.
- в) Число l-k больше нуля и делится на общий делитель чисел k и l, поэтому $l-k \ge 9$; $k-l \le -9$, что вместе с условием $k+l \le 110$ приводит к неравенству $2k \le 101$, то есть $k \le 50$. При этом

$$k+d \le l \le 110-k$$
,

где d — наименьший общий делитель, превосходящий 8.

Если k = 47, то d = 47, $47 + 47 = 94 \le l \le 110 - 47 = 63$. Противоречие.

Если k = 48, то d = 12, l = 60, а в роте 108 солдат.

Если k = 49, то $98 \le l \le 110 - 49 = 61$. Противоречие.

Если k = 50, то d = 10, l = 60, а в роте 110 солдат.

Ответ: а) Например, 50 и 60; б) нет; в) 108 или 110.

Содержание критерия	Баллы
Обоснованно получен верный ответ во всех пунктах.	4
Верно выполнены пункты a и b или b и b .	3
Верно выполнены пункты a и δ или только пункт b .	2
Верно выполнен один из пунктов a и δ .	1
Решение не соответствует ни одному из критериев, перечисленных	0
выше.	
Максимальный балл	4